教育行业A股IPO第一股(股票代码 003032)

全国咨询/投诉热线:400-618-4000    举报邮箱:mc@itcast.cn

“周”更新日志
课程大版本更新

课程更新日志按周更新热点/前沿技术

  • 新增2023-06-29

    · VFL损失函数的介绍· DFL损失的使用· anchor的对齐方式

  • 新增2023-06-21

    · 量化机制的介绍· 图优化方法的使用

  • 新增2023-06-15

    · yoloV8的架构解析· 双流FPN结构的设计

  • 新增2023-06-07

    · 正负样本的分配策略· Batch normalization在预测阶段的使用

  • 新增2023-06-02

    · 卷积和池化降维策略的融合· 辅助头设计方法

  • 新增2023-05-25

    · yoloV7模型的网络结构· E-ELAN的设计策略

  • 新增2023-05-18

    · Rep-PAN的特征融合方式· EfficientRep结构的使用

  • 新增2023-05-10

    ·REPVgg的思想· 训练和预测网络结构分离的策略

  • 新增2023-05-04

    ·SIOU损失的策略

    升级

    ·IOU系列的损失函数

  • 新增2023-04-26

    ·检测端的解耦结构· anchor-free的检测方式

  • 新增2023-04-18

    ·yoloV6进行目标检测的思想· yoloV6的网络结构

  • 升级2023-04-12

    ·实现关系抽取API接口搭建· Neo4j图数据库介绍与使用· 娱乐数据知识图谱搭建

  • 升级2023-04-06

    ·Joint联合方法实现关系抽取· Casrel关系抽取模型架构介绍· Casrel模型实现关系抽取原理

  • 升级2023-03-28

    ·Pipeline方法实现关系抽取· BiLSTM+Attention关系分类模型架构介绍· BiLSTM+Attention模型实现关系分类原理

  • 升级2023-03-23

    ·规则进行关系抽取的概念· 规则进行关系抽取的步骤和原理

  • 升级2023-03-15

    ·关系抽取方法基础知识介绍· 解析关系抽取的任务特点· 分析关系抽取任务的评价指标· 对比介绍实现关系抽取的常用方法

  • 新增2023-03-07

    ·FastText模型架构原理· 层次softmax以及负采样优化方法

  • 升级2023-03-01

    ·文本数据增强方式接口更改· 机器翻译案例代码错误修改

  • 新增2023-02-23

    ·ChatGPT的基本使用· 挖掘ChatGPT背后原理· 基于ChatGPT完成聊天机器人项目的介绍

  • 升级2023-02-17

    ·图像分类的经典网络· 智慧交通项目目标跟踪方法

  • 新增2023-02-09

    ·预训练模型的知识融入技术· 工业界发布模式介绍

  • 新增2023-02-03

    ·BERT模型参数详解与优化经验· 基于BERT完成生成式任务的介绍

  • 新增2023-01-28

    ·知识蒸馏原理详解· 知识蒸馏优化文本多分类

  • 新增2023-01-19

    ·百度ERNIE模型介绍与微调· MENGZI模型介绍与微调· NeZha模型介绍与微调

  • 新增2023-01-13

    ·K-BERT和KG-BERT模型介绍· MASS模型介绍与微调· BART模型介绍与微调

  • 新增2023-01-05

    ·MacBERT模型介绍与微调· SpanBERT模型介绍与微调· FinBERT模型介绍与微调

  • 新增2022-12-29

    ·XLNet模型介绍与微调· Electra模型介绍与微调· RoBERTa模型介绍与微调

  • 新增2022-12-20

    ·AlBERT模型介绍与微调· T5模型介绍与微调· ansformer-XL模型介绍与微调

  • 新增2022-12-14

    ·多参数模块的剪枝技术· 全局剪枝技术· 用户自定义剪枝

  • 新增2022-12-06

    ·定制化数据处理代码· 模型动态量化技术· 特定网络的剪枝技术

  • 新增2022-11-30

    ·FastText完成多分类的基线模型· FastText模型优化与部署· 基于BERT的文本多分类迁移学习模型

  • 新增2022-11-22

    ·数据来源解决方案· 随机森林基线模型

  • 新增2022-11-16

    ·BERT GPT ELMo模型的不同点和各自优缺点

  • 新增2022-11-08

    ·GPT的架构· GPT的训练过程· GPT2的架构

  • 新增2022-11-02

    ·Transformer的并行计算过程· Transformer可以替代Seq2Seq原因· ELMo总体架构· ELMo模型预训练任务

  • 新增2022-10-27

    ·Transformer模块的Encode结构和作用· Transformer模块的Decoder结构和作用· Self attention机制中的归一化原因

  • 新增2022-10-19

    ·循环神经网络-案例-网络搭建· 循环神经网络-案例-训练函数· 循环神经网络-案例-预测函数

  • 新增2022-10-11

    ·循环神经网络-案例-数据清洗· 循环神经网络-案例-构建词典· 循环神经网络-案例-数据类编写

  • 新增2022-09-30

    ·循环神经网络-RNN层理解· 循环神经网络-RNN层使用

  • 新增2022-09-22

    ·循环神经网络-RNN算法· 循环神经网络-Embedding使用· 循环神经网络-Embeddings小节

  • 新增2022-09-16

    ·卷积神经网络-案例-图像分类-CIFAR10数据集· 卷积神经网络-案例-图像分类-CNN网络搭建· 卷积神经网络-案例-图像分类-编写训练函数· 卷积神经网络-案例-图像分类-编写预测函数· 卷积神经网络-案例-图像分类-小节

  • 新增2022-09-07

    ·卷积神经网络-Conv2d使用· 卷积神经网络-池化计算· 卷积神经网络-MaxPool2d使用

  • 新增2022-09-01

    ·卷积神经网络-卷积神经网络概述· 卷积神经网络-图像基础知识· 卷积神经网络-卷积简单计算· 卷积神经网络-多卷积核计算

  • 新增2022-08-26

    ·神经网络基础-价格分类-模型训练过程· 神经网络基础-价格分类-模型评估过程· 神经网络基础-价格分类-网络模型调优· 神经网络基础-价格分类-小节

  • 新增2022-08-17

    ·神经网络基础-价格分类-案例介绍· 神经网络基础-价格分类-构建数据集· 神经网络基础-价格分类-网络模型搭建

  • 新增2022-08-09

    ·神经网络基础-dropout对网络参数的影响· 神经网络基础-BN层理解· 神经网络基础-价格分类-案例介绍· 神经网络基础-价格分类-构建数据集

  • 新增2022-08-02

    ·神经网络基础-adagrad优化方法· 神经网络基础-rmsprop优化方法· 神经网络基础-adam和小节· 神经网络基础-dropout原理

  • 新增2022-07-25

    ·神经网络基础-反向传播算法案例讲解· 神经网络基础-反向传播算法代码演示· 神经网络基础-指数加权平均· 神经网络基础-momentum优化方法

  • 升级2022-07-18

    ·优化PyTorch使用-模型定义方法-实现线性回归· 优化PyTorch使用-直接序列化模型对象· 优化PyTorch使用-存储模型参数

  • 新增2022-07-11

    ·神经网络基础-激活函数小节· 神经网络基础-网络参数初始化· 神经网络基础-梯度下降算法回顾· 神经网络基础-正向传播和链式法则

  • 升级2022-07-04

    ·优化PyTorch使用-手动构建线性回归小节· 优化PyTorch使用-模型定义方法-基本组件的使用· 优化PyTorch使用-模型定义方法-数据加载器

  • 新增2022-06-28

    · 神经网络基础-simoid激活函数· 神经网络基础-tanh激活函数· 神经网络基础-relu激活函数· 神经网络基础-softmax激活函数

  • 新增2022-06-21

    ·神经网络基础-人工神经网络概述· 神经网络基础-激活函数的作用

    升级

    · 优化PyTorch使用-手动构建线性回归-训练函数编写思路· 优化PyTorch使用-手动构建线性回归-训练函数代码实现

  • 新增2022-06-14

    · Transformers库管道方式实现基础NLP任务 · Transformers库自动模型方式实现基础NLP任务 · Transformers库具体模型实现基础NLP任务· 迁移学习中文分类案例· 迁移学习中文填空案例· 迁移学习句子关系管理· 删除Transformers发布模型旧的方式

  • 升级2022-06-07

    · 优化seq2seq英译法案例· 数据处理机制· Python语言操作Flink· 优化Transformer模块测试案例· 输入部分· 输出部分· 编码器部分· 解码器部分

  • 新增2022-05-31

    · NLP基础课程新增 词向量检索基础知识

    升级

    · 词嵌入层可视化显示实验· RNNAPI编程案例· RNN人名分类器案例· 数据处理机制· 模型训练方法

  • 新增2022-05-24

    · 如何构建特征,如何评估特征 · 从原始数据构造出新特征的方法 · 新增特征变换的方法· 新增缺失值处理的方法

  • 新增2022-05-17

    · 信贷审批业务的基本流程 · 新增ABC评分卡 · 新增风控建模的基本流程· 新增评分卡模型正负样本定义方法

  • 新增2022-05-10

    · 增加SQL进行风控报表开发 · 增加信贷审批业务的基本流程 · 增加风控建模的基本流程· 机器学习风控模型的优势

  • 新增2022-05-03

    · 增加LR理论推导 · 增加朴素贝叶斯推导 · 增加用户画像案例· 增加金融风控项目

  • 新增2022-04-26

    · 增加Python进行RFM分群 · 增加使用Pyecharts绘制3D图形 · 增加SVM理论推导· 增加GBDT理论推导

  • 新增2022-04-19

    · ViBert · 图像分析方法 · 标签数据统计及应用· 梯度剪裁方法

  • 升级2022-04-12

    · 优化Numpy基础矩阵预算 · 应用Pandas进行简单排序、分组、聚合等计算 · 优化Pandas处理方法

  • 新增2022-04-05

    · MOE方法 · 级联MOE Model · GAP评估方法· NextVLad视频聚合

  • 新增2022-03-29

    · 模型剪枝 · RoBerta新模型 · Transformer-XL新模型· 多分类知识蒸馏

  • 新增2022-03-22

    · Vggish · PCA方法 · SE Context模型融合· Logistics模型分类

  • 新增2022-03-15

    · 增加MySQL的Datagrip工具连接数据库 · 增加SQL的窗口函数用法 · 增加Pandas的透视表用法

  • 新增2022-03-08

    · pad的增强方式 · 分布式训练 · 视频标签任务· MFCC

  • 新增2022-03-01

    · 增加Pyecharts实现各种图形绘制 · 删除Ununtu系统 · 增加Linux中Shell的基本操作

    升级

    · 升级优化为CentOs系统

  • 新增2022-02-22

    · 模型量化方法 · 模型剪枝方法 · 模型蒸馏方法· tf-serving模型部署

  • 新增2022-02-15

    · Python进阶中增加数据爬虫案例

    升级

    · 升级闭包装饰器内容 · 优化升级深拷贝和浅拷贝的

  • 新增2022-02-08

    · 年龄检测方法 · NAS神经网络搜索 · NAS-FPN网络· 人脸矫正对齐

  • 新增2022-01-25

    · yolo-tiny模型 · 多任务模型介绍 · mish激活函数· mmdetection目标检测框架

  • 新增2022-01-18

    · Python基础案例增加学生管理系统 · Python进阶中增加多任务编程 · Python进阶增加FastAPI搭建服务器

  • 新增2022-01-11

    · wing损失函数 · 人脸关键点检测 · 关键点描述方法 · SEnet注意力模型

  • 新增2022-01-04

    · BERT+CRF · TENER · nested NER优化

  • 新增2021-12-28

    · 人脸性别检测 · 人脸年龄检测 · 人脸对比 · arcface损失函数

  • 新增2021-12-14

    · 人脸模糊判断 · 人脸相似度检测 · 度量学习模型 · 孪生模型

  • 新增2021-11-30

    · 人脸检测 · 人脸跟踪 · 人脸三维角度检测 · 人脸明暗检测

  • 新增2021-11-16

    · 后处理方法GreedyNMS · Swish激活函数 · SENET注意力机制 · Focal loss

  • 新增2021-11-12

    · 后处理方法GreedyNMS · Swish激活函数 · SENET注意力机制 · Focal loss

  • 新增2021-11-09

    · 文本摘要项目部署 · textcnn模型原理 · textcnn模型实现 · textcnn模型优化

  • 新增2021-11-02

    · hue增强方法 · 多张图增强 · LRRelu激活函数 · 噪声增强方式

  • 新增2021-10-26

    · CPU优化 · Flask框架的介绍 · Django框架的介绍 · API接口封装

  • 新增2021-10-19

    · 内容理解 · 内容生成 · 内容安全治理的主要技术 · 内容安全要解决的核心问题

  • 新增2021-10-12

    · 半监督数据增强 · Scheduled sampling优化策略 · Weight tying优化策略 · CPU优化

  • 新增2021-10-05

    · 图像文本掩码 · 视觉文本匹配 · 掩码视觉区域 · 序列到序列目标损失

  • 新增2021-09-28

    · gensim实现TF-IDF算法 · 纯Python代码实现纯TF-IDF算法 · TF-IDF模型 · 回译数据

  • 新增2021-09-21

    · 多模态的语言表征 · 基于自编码自回归架构的模型 · 单流结构 · 双流结构

  • 新增2021-09-14

    · viterbi Decode · Beam-serch Decode · Beam-serch优化模型 · 单词替换数据增强

  • 新增2021-09-07

    · 新型网络 · 仇恨言论检测 · 职责界定 · 多模态核心任务

  • 新增2021-08-31

    · coverage数学原理 · PGN + coverage网络优化 · Beam-search算法 · Greedy Decode

  • 新增2021-08-24

    · 跳层连接skip layers · 模型感受野RFB · 注意力机制Point-wise attention · DIOU网络预测

  • 新增2021-08-17

    · BLEU算法解析 · ROUGE评估 · ROUGE算法解析 · ROUGE算法实现

  • 新增2021-08-11

    · 字典性质的描述举例 · 多线程优化 · 人脸三维重建 · 异常的使用场景举例

  • 新增2021-08-04

    · PGN模型的数据迭代器 · PGN模型实现 · PGN模型网络训练 · BLEU评估

  • 新增2021-07-27

    · 对比度调整 · SPP结构 · sam注意力机制 · 空间注意力

  • 新增2021-07-20

    · 内容张量context vector计算 · 单词分布张量P_vocab计算 · 分布张量P_w计算 · PNG网络数据清洗

  • 新增2021-07-13

    · 知识蒸馏方法 · 模型剪枝方法 · Dropblock正则化 · Hide and seek图像增强

  • 新增2021-07-07

    · Transformer问答试题 · Elmo模型讲解 · yoloV4模型 · Siamese系列网络详解

  • 新增2021-06-30

    · 升级集成学习知识框架 · 细化集成学习算法推导过程 · stacking算法优化 · 北京市租房房价预测

  • 新增2021-06-22

    · 模型的整体实现 · 数据清洗 · gensim训练词向量 · 词向量优化模型

  • 新增2021-06-15

    · SAT自对抗训练进行数据增强 · 数据增强意义 · CSP模块介绍 · SPP结构

  • 新增2021-06-08

    · 多核并行处理数据优化 · 参数配置及数据优化 · 模型数据的优化 · 模型子层的实现

  • 新增2021-06-01

    · 小目标检测技巧 · 损失函数设计 · CIOU损失

  • 新增2021-05-25

    · 基于jieba的TextRank · 基于TextRank算法模型构建 · 文本摘要数据集优化· seq2seq架构实现文本摘要架构

  • 新增2021-05-18

    · 马赛克增强 · gridmask · Cutmix· 填充

  • 新增2021-05-11

    · TextRank算法实现 · 关键词抽取 · 关键短语抽取· 关键句抽取

  • 新增2021-05-04

    · 数据增强 · mixup · cutout· 随机擦除

  • 新增2021-04-27

    · 抽取式摘要 · 生成式摘要 · 文本摘要项目数据集· TextRank算法原理

  • 升级2021-04-20

    · tfrecord文件介绍 · 图像数据feature构建 · Example的构建· writer_to_tfrecord的使用

  • 新增2021-04-13

    · 静态量化和动态量化对比 · prune技术介绍 · 持久化修剪后的模型· 模型推断加速

  • 升级2021-04-06

    · yoloV3的损失计算 · yoloV4模型介绍 · 正负样本的设计· 多任务损失

  • 升级2021-03-30

    · 标签平滑技术优化 · badcase分析案例演示 · badcase优化总结· 模型热更新讲解优化

  • 新增2021-03-22

    · ORB特征的方向设计 · 目标的外接矩形 · ROIAlign算法· 全卷积网络

  • 升级2021-03-16

    · GLUE标准数据集介绍 · run_glue脚本讲解方式调整 · gpu服务器验证优化介绍· weight_decay演示调优

  • 新增2021-03-09

    · 大津法 · 轮廓检测 · 矩特征· 目标的质心计算

  • 升级2021-03-02

    · bert模型调整 · 考试数据集实例演示 · 考试数据清洗代码精炼· bert-Multilingual进行微调优化

  • 升级2021-02-23

    · FPN进行特征融合 · 候选框的多尺度映射方法 · 候选框的选择方法· 对比混合精度驯良

  • 新增2021-02-16

    · 上线模型优化 · 模型量化压缩技术 · ONNX-Runtime推断加速· 对比混合精度驯良练

  • 升级2021-02-09

    · 选择性搜索(SS) · 目标框位置回归的意义 · 候选区域映射的方法· fasttext模型baseline训练

  • 升级2021-02-02

    · Django中views文件讲解顺序 · 多线程实现举例 · fasttext模型原生代码pytorch实现· fasttext模型baseline训练

  • 新增2021-01-26

    · 目标检测评价指标MAP · softNMS方法 · overfeat方法· RPN网络详解

  • 新增2021-01-19

    · 从SQL中获取数据演示 · 意向校区识别代码逻辑 · "手机号","微信号","QQ号"识别规则细化· 与后端交互数据举例

  • 升级2021-01-12

    · IOU在目标跟踪中的使用 · 相机外参的计算方法 · 图像畸变产生的原因· 图像去畸变的方法

  • 升级2021-01-05

    · 信息中心需求分析细化 · 产品设计逻辑修改 · 原始数据分析思路· fasttext讲解案例

  • 新增2020-12-29

    · 分水岭算法介绍 · GraphCut算法简介 · 二分图原理介绍· 最优匹配方法介绍

  • 升级2020-12-21

    · flask框架整体介绍 · 市场中主流AI平台演示 · 标贝科技产品体验演示· 传智大脑整体架构介绍

  • 新增2020-12-14

    · VGG模型实现 · Inception系列模型对比 · 边缘检测计算复杂度介绍· 傅里叶变换在图像处理中的应用

  • 升级2020-12-07

    · series和dataframe介绍 · torchserve实验 · 非正常卷积网络结构解析· 车辆偏离车道中心距离优化

  • 新增2020-11-30

    · lightGBM推导 · 优化实体提取模型 · 多尺度网络与非正常卷积初步· 车道线检测laneNet实现

  • 升级2020-11-23

    · 朴素贝叶斯常见面试题讲解 · 修改部分项目bug · 多精度多分辨率通道分组网络总结· sort算法进行多目标跟踪优化

  • 新增2020-11-16

    · 机器学习中svr的介绍 · 积分梯度解析 · 嘴唇分割模型优化 · 多目标跟踪deepsort算法的实现

  • 升级2020-11-09

    · 机器学习svm部分面试题 · bert源码解析 · 嘴唇分割模型训练· fasterRCNN目标检测优化

  • 新增2020-11-02

    · 相对路径和绝对路径的使用场景描述 · LIT实验 · 用于图像分割的实时分组网络 · 模型微调方法简介

  • 升级2020-10-26

    · 优化tree命令的安装及使用 · Reformer实验 · 多分辨率卷积核通道分组网络· yoloV3进行目标检测案例

  • 新增2020-10-19

    · 操作系统的简介内容 · Captum实验 · 通道补偿技术· 图像增强方法实现

  • 升级2020-10-13

    · 优化面向对象的介绍 · 可解释性工具 · 多分支网络结构设计 · G使用tf.keras完成网络模型的搭建

  • 新增2020-10-08

    · 文件操作案例 · GPT-3解决生成 · 网络瓶颈结构探索· GoogLeNet的网络构建

  • 升级2020-09-28

    · vim的常用操作命令 · 数据增强方法 · MobileNet网络深度对实验的影响· tensorflow入门升级

  • 新增2020-09-08

    · 增加break关键字的使用场景案例 · 模型蒸馏 · Neocognitron网络· k-means算法推导过程举例

  • 升级2020-09-01

    · 逻辑运算符的演示案例 · 模型剪枝 · 加深网络,提升模型性能· 朴素贝叶斯案例修改

  • 新增2020-08-25

    · 增加变量的演示案例 · ALBERT解析 · 轻量级人脸表情和年龄识别· 对多态的描述举例

  • 升级2020-08-18

    · 优化对集合的性质的描述 · 模型量化 · 三维人脸库的使用与重建· 优化对私有属性的使用场景的描述

  • 新增2020-08-11

    · 字典性质的描述举例 · 多线程优化 · 人脸三维重建· 异常的使用场景举例

  • 升级2020-08-04

    · 优化对Python语言性质的描述 · BART实验解决NER · 人脸美颜与迁移学习· 优化Python2和Python3的对比

  • 升级2020-07-28

    · 场景识别案例优化模型方法 · 图像与视觉处理专业课优化方案启动 · 自然语言处理PyTorch工具讲解调优

  • 升级2020-07-21

    · pytorch讲义 · CV基础考试题 · RCNN系列目标检测模型 · 人脸检测案例

  • 新增2020-07-14

    · GPT模型讲解 · 典型的NLP算法 · SIamRPN++网络讲解 · DeepLab系列介绍

  • 升级2020-07-10

    · KNN算法导入案例 · 线性回归正规方程推导过程 · 线性回归案例迭代 · 虚拟环境安装详解

  • 新增2020-07-07

    · Transformer问答试题 · Elmo模型讲解 · yoloV4模型 · Siamese系列网络详解

  • 升级2020-06-30

    · 升级集成学习知识框架 · 细化集成学习算法推导过程 · stacking算法优化 · 北京市租房房价预测

  • 新增2020-06-23

    · 基于seq2seq的机器翻译任务 · 莎士比亚风格的文本生成任务 · ResNet模型在GPU上的并行实践任务 · 自然语言处理:NLP案例库(6个案例)

  • 新增2020-06-16

    · 图像与视觉处理:计算机视觉面试题(80道) · 图像与视觉处理:算法强化课程8天 · 计算机视觉面试题视频(80道) · 图像与视觉处理:计算机视觉案例库

  • 新增2020-06-09

    · 基础NLP试题 · AI医生项目试题 · 文本标签项目试题, 和泛娱乐项目试题 · 自然语言处理:NLP题库(135道)

  • 新增2020-06-02

    · 车道检测 · 车辆技术 · 车辆跟踪 · 图像与视觉处理:智慧交通项目

  • 升级2020-05-26

    · 决策树案例 · 调整预剪枝、后剪枝知识点讲解 · 决策回归树讲解 · 基尼指数优化

  • 新增2020-05-19

    · 口罩识别 · 活体检测 · 人脸属性识别 · 图像与视觉处理:人脸识别项目

  • 升级2020-05-12

    · SVM算法推导过程讲解 · 朴素贝叶斯前面增加概率知识介绍 · HMM模型推导过程 · HMM案例优化

  • 新增2020-05-05

    · 形态学定义、连通性 · 二值操作、平滑、梯度 · 纹理分割及OpenCV实践 · 图像与视觉处理:形态学专题

  • 新增2020-04-28

    · 几何变换专题 · 翻转、剪裁、遮挡、图像算数 · 图像金字塔、OpenCV几何变换操作​ · 翻转、剪裁、遮挡、OpenCV几何变换操作

  • 升级2020-04-21

    · gbdt案例优化 · xgboost算法推导过程讲解 · lightGBM算法 · pubg案例优化

  • 新增2020-04-14

    · 图像矩特征点度量特征、全局直方图 · 局部区域直方图、散点图和3D直方图 · OpenCV实践 · 图像与视觉处理:直方图处理专题

  • 新增2020-04-07

    · 命名实体识别模型BiLSTM + CRF · 句子对主题相关模型BERT · 在线部分关于neo4j数据库、redis的实时存取 · 自然语言处理:AI在线医生项目

  • 升级2020-03-31

    · xgboost算法介绍 · OTTO案例 · xgboost和gbdt对比 · bgdt推导过程优化

  • 新增2020-03-24

    · fasttext工具介绍 · fasttext训练词向量, 并完成词向量迁移 · fasttext工具实现文本分类的代码案例 · 自然语言处理:fasttext训练词向量、文本分类,词向量迁移

  • 新增2020-03-17

    · 灰度直方图、灰度的线性变换 · 灰度对数变换、伽玛变换 · 灰度阈值变换、分段线性变换 · 图像与视觉处理:基本的灰度变换函数专

  • 新增2020-03-10

    · EM算法 · 极大释然估计讲解 · HMM模型 · HMM案例搭建

  • 新增2020-03-03

    · 基本的OpenCV代码 · Image数据结构、读写图像 · OpenCV基础专题函数与API讲解

  • 升级2020-02-25

    · 线性回归知识点讲 · xgboost讲解案例 · 逻辑回归多分类问题评估 · RNN+Attention实现英译法任务

  • 新增2019-12-27

    · Transformer架构图的详解 · 四大组成模块的分块代码详解和示例 · copy小案例 · 自然语言处理:Transformer的原理和架构

  • 新增2019-12-20

    · 数据分析实战,北京市租房数据统计分析 · NBA球员数据分析 · 电影数据分析案例 · pandas读取Excel、sql

  • 新增2019-12-13

    · Dilated Convolutions:聚合多尺度的信息 · PSPNet:金字塔池化模块 · Mask-RCNN:端到端联合训练目标分割实战案例 · 图像与视觉处理:图像分割专题

  • 新增2019-12-06

    · RNN构造人名分类器的案例 · RNN实现英译法的seq2seq架构代码 · 在seq2seq架构基础上添加Attention的架构方案代码 · 自然语言处理:RNN构造人名分类器

  • 新增2019-11-29

    · 目标检测专题RCNN,FastRCNN · FasterRCNN· 先验框、细粒度与多尺度特征· 图像与视觉处理:目标检测专题

  • 新增2019-11-22

    · 数据可视化库seborn · 箱线图知识点 · 增加小提琴图知识点· 单变量、多变量分析

  • 新增2019-11-15

    · RNN、LSTM、 GRU基本结构和原理介绍 · Attention机制原理 · 代码示例和图解注意力机制· 自然语言处理:RNN、 LSTM、 GRU、 Attention等

  • 新增2019-11-08

    · 经典卷积网络:LeNet5、AlexNet、VGG、Inception、GoogleNet · 残差网络、深度学习优化 · 迁移学习:TensorFlow HUB;模型压缩· 图像与视觉处理:经典卷积网络

  • 新增2019-11-01

    · 项目实训-“吃鸡”玩家排名预测 · 决策树算法案例 · 逻辑回归案例· 朴素贝叶斯案例

  • 新增2019-10-20

    · hanlp命名实体识别工具 · word2vector原理到应用,文本的预处理前数据分析,添加ngram特征 · 文本数据增强, 回译数据增强法· 自然语言处理:文本分词,命名实体识别,Word2Vector,文本数据分析

  • 新增2019-10-10

    · 机器学习经典算法朴素贝叶斯 · 机器学习经典算法支持向 · 聚类算法推导过程· SVM手写数字识别案例

  • 新增2019-10-08

    · 神经网络基础与Tensorflow框架 · 图、会话、张量、OPTensorflow高级API,训练tf.MirroedStrategy · 导出tf.SavedModel等· 神经网络基础与Tensorflow框架

  • 新增2019-08-20

    · 原始文本预处理, word2vec · fasttext多分类的应用 · 并升级工程整合和实时服务· 自然语言处理:中文标签化系统项目

  • 新增2019-06-30

    · 召回策略算法代码更新 · 排序策略算法代码更新 · neo4j数据库的应用· 自然语言处理:泛娱乐推荐系统项目


点击加载更多>>
2023.02.24 升级版本4.0

课程名称

人工智能AI进阶班

课程推出时间

2023.02.24

课程版本号

4.0

主要使用开发工具

Linux+PyCharm+Scikit-Learn+Pytorch+Neo4j+Docker

主要培养目标

以数据挖掘和NLP自然语言处理为核心方向,培养企业应用型高精尖AI人才

课程介绍

人工智能ChatGPT开发V4.0课程体系升级以企业需求为导向,专为培养和打造高级人工智能工程师、高含金量课程重磅推出,以业务为核心驱动项目开发,课程包括机器学习和深度学习框架Scikit-Learn和Pytorch,能够解决企业级数据挖掘、NLP自然语言处理与CV计算机视觉实际问题,通过理论和真实项目相结合,让学生能够掌握人工智能核心技术和应用场景。并推出「六项目制」项目教学,通过六个不同类型和开发深度的项目,使学员能够全面面对大部分企业人工智能应用场景。大型项目库,多行业多领域人工智能项目课程,主流行业全覆盖,其中项目课程包括了多行业13个场景的项目课程,让学生达到大厂的项目经验要求。课程消化吸收方面:V4.0在V3.0版本基础上迭代更新,注重专业课的消化吸收,降低学习难度,提升就业质量。

1

优化Python系统编程,针对人工智能必须的Python高阶知识体系重构课程,增加基础数据结构内容

1

新增机器学习部分[数据挖掘项目实战],以多场景业务为背景,通过SQL和Pandas完成数据处理与统计分析,夯实使用机器学习解决数据挖掘问题能力。

1

新增NLP方向[知识图谱项目],基于知识图谱的多功能问答机器人项目, 主要解决当前NLP领域中大规模知识图谱构建的问题和图谱落地的问题.知识图谱的构建主要分为知识构建和知识存储两大子系统. 包括知识构建, 知识存储, 知识表达, 路由分发, 结果融合等实现.最终呈现一个基于知识图谱的问答机器人。
新增[知识抽取项目],该项目针对于泛娱乐场景下复杂业务关系进行实体抽取,帮助企业构建知识图谱。

1

新增NLP方向 [ChatGPT技术深入浅出] 阶段课程,以ChatGPT技术为导向,挖掘GPT1、GPT2、GPT3以及ChatGPT等GPT系列模型的背后原理,并基于GPT系列大型预训练语言模型,推出全新聊天机器人项目课程。

1

优化NLP方向[NLP基础课程]:修改文本数据增强方法,解决原始谷歌接口被限制调用的问题;优化Seq2Seq英译法案例,修改原始代码bug,提升模型的准确率;新增FastText模型架构介绍;加深FastText模型处理分类的问题的原理理解;新增Word2Vec训练两种优化策略,加速模型快速收敛。

1

优化计算机视觉CV基础:图像分类的经典网络,开山之作ALexNet,VGGNet,GoogLenNet,ResNeT,ResNetV2,VGGRep,SeNet,轻量型网络:mobileNet,shuffleNet,EfficientNet,模型微调,数据增强,cutmix,copypaste,mosaic,目标检测任务,IOU,Map,正负样本设计,smoothL1损失,RCNN系列网络架构:RCNN,FastRCNN,FasterRCNN,MaskRCNN,FPN结构,ROIpooling设计,anchor思想,RoiAlign设计,训练策略;yolo系列网络V1-V8:DarkNet,yolo-FPN特征融合,passthrough融合方法,多尺度训练,IOU系列损失,DIOU,CIOU,SIOU等,输出端的解耦,REP-PAN结构,E-ELAN结构,预测阶段的BN设计,SPP和SPPF结构

1

优化智慧交通项目:目标跟踪方法,运动模型的设计,DBT和DFT初始化方法,JIT的加速方法,yoloV7目标检测,REP的使用,检测辅助端的使用,E-ELAN的使用,backbone的实现,head结构的实现,数据分析,数据预处理,数据增强,模型训练,预测与评估,车辆检测,kalman的使用,预测和更新阶段,KM算法的匹配,匈牙利算法,IOU匹配,级联匹配,ReId特征提取,欧式距离,余弦距离,马氏距离计算,目标状态更新,Deepsort算法目标跟踪,代价矩阵的设计,虚拟线圈的设计,线圈位置的获取,双线圈检测车流量支持mac电脑的m1芯片和m2芯片的学习

1

友情提示更多学习视频+资料+源码,请加QQ:2632311208。

2022.01.20 升级版本3.0

课程名称

人工智能AI进阶班

课程推出时间

2022.01.20

课程版本号

3.0

主要培养目标

以机器学习和深度学习技术,培养企业应用型高精尖AI人才

主要使用开发工具

Linux+PyCharm+DataSpell+Pytorch+Tensorflow+Neo4j+Docer+k8s

课程介绍

人工智能V3.0课程体系升级以企业需求为导向,专为培养和打造高级人工智能工程师、高含金量课程重磅推出,以业务为核心驱动项目开发,课程包括机器学习和深度学习框架Pytorch和TensorFlow,能够解决企业级数据挖掘、NLP自然语言处理与CV计算机视觉实际问题,通过理论和真实项目相结合,让学生能够掌握人工智能核心技术和应用场景。并推出「六项目制」项目教学,通过六个不同类型和开发深度的项目,使学员能够全面面对大部分企业人工智能应用场景。大型项目库,多行业多领域人工智能项目课程,主流行业全覆盖,其中项目课程天数占比为100天,包括了多行业13个场景的项目课程,让学生达到大厂的项目经验要求。课程消化吸收方面:V3.0在V2.0版本基础上迭代更新,注重专业课的消化吸收,降低学习难度,提升就业质量。

1

优化优化Python系统编程,针对人工智能必须的Python高阶知识体系重构课程

1

新增[数据处理与统计分析阶段],以Linux为基础,通过SQL和Pandas完成数据处理与统计分析,为人工智能数据处理奠定技术基础。

1

优化优化机器学习算法,每个算法都兼具使用场景,数学推导过程及参数调优

1

新增[机器学习与多场景],增加多场景案例实战,包括用户画像,电商运营建模等多场景案例实战

1

新增数据挖掘方向[百京金融风控]项目,从反欺诈、信用风险策略、评分卡模型构建等热点知识,使得学员具备中高级金融风控分析师能力。

1

新增数据挖掘方向[万米推荐系统]项目,从多数据源采集、多路召回、基于机器学习算法粗排算法与基于深度学习精排,解决了在大数据场景下如何实现完整推荐系统,使得学员可以具备企业级推荐项目开发能力。

1

优化深度学习基础课由TensorFlow切换为Pytorch,面向零基础同学更加友好

1

优化NLP基础课程Transform基础和Attention注意力机制在原理之后增加英译汉的案例,加强学生对基础算法原理的理解

1

优化NLP基础课程迁移学习API版本变化问题,优化传统序列模型算法原理

1

新增NLP方向[蜂窝头条文本分类优化]项目,增强学生NLP算法优化方面技能

1

新增NLP方向[知识图谱]项目,通过本体建模,知识抽取,知识融合,知识推理,知识存储与知识应用方面,学生可以掌握完整知识图谱构建流程。

1

新增[面试加强课]通过巩固机器学习与深度学习基础算法,加强核心算法掌握,增加数据结构基础算法、动态规划算法、贪心算法等面试高频算法题,加强多行业人工智能案例理解与剖析

1

删除Ubuntu环境搭建开发环境

2021.02.01 升级版本2.0

课程名称

人工智能AI进阶班

课程推出时间

2021.02.01

课程版本号

2.0

主要针对

python3 & python2

主要使用开发工具

linux+PyCharm+Pytorch+Tensorflow+OpenCV+neo4j+Docer+k8s

课程介绍

AI理论方面: 通过新的开发的文本摘要项目、传智大脑项目, 提升学员复杂模型训练和优化的能力。
AI工程化方面: 新增的算法工程化讲座, 直接面向一线公司实际开发场景和需求, 比如服务日志, A/B测试, Git提交, Docker, K8S部署等, 让学员亲临公司场景, 求职后更好的无缝衔接进企业级开发。
AI新热点和趋势: 通过增加量化、剪枝、知识蒸馏、迁移学习等一线优化技术, 让学生有更多处理问题的武器和思路;增加知识图谱热点、mmlab框架热点、YOLO1~5算法系列,能更好的匹配业界需求。
课程消化吸收方面:V2.0在V.1.x版本基础上迭代更新,注重专业课的消化吸收,降低学习难度,提升就业速度、就业质量。

1

新增NLP方向【文本摘要项目】:自动完成文本信息的主题提取,中心思想提取,可以类比京东,当当网的商品自动宣传文案;快速的将主要信息展示给用户, 广泛应用于财经, 体育, 电商, 医疗, 法律等领域。基于seq2seq + attention的优化模型,基于PGN + attention + coverage的优化模型,基于PGN + beam-search的优化模型,文本的ROUGE评估方案和代码实现:weight-tying的优化策略、scheduled sampling的优化策略。

1

新增AI基础设置类项目【传智大脑】,目前提供AI前端功能展示、AI后端模型部署、AI在线服务、AI模型训练功能等系统功能。AI开发服务提供了信息中心网咨辅助系统,文本分类系统、考试中心试卷自动批阅系统、CV统计全国开班人数等系统;综合NLP、CV和未来技术热点。

1

新增CV方向【人流量统计项目】:以特定商场、客服场景对人流量进行分析和统计。掌握mmlab框架、核心模块MMDetection;resnet骨架网络特征提取,SSD网络和Cascade R-CNN网络目标检测;利用剪枝,压缩和蒸馏等方法减小模型规模;完成前后端部署(Flask + Gunicorn)、模型部署(ONNX-runtime技术)。

1

优化NLP方向【AI在线医生项目】: 两个离线模型 (命名实体审核模型, 命名实体识别模型)的优化,提升准确率, 召回率,F1的效果。 一个在线模型 (句子主题相关模型)的优化, 重在量化, 压缩, 知识蒸馏, 提升处理速度并展示对比测试实验。

1

新增知识图谱热点案例:知识图谱编程、深化neo4j中的cypher代码, 相关案例。

1

新增计算机视觉目标检测热点算法YoLov1~v5 V1~V5模型的网络架构、输入输出、训练样本构建,损失函数设计;模型间的改进方法;多尺度检测方法、先验框设计;数据增强方法、多种网络架构及设计不同模型的方法。

1

优化计算机视觉专业课:RCNN系列网络进阶课程:FasterRCNN目标检测的思想,anchor(锚框)设计与实现,掌握RPN网络是如何进行候选区域的生成的,掌握ROIPooling的使用方法掌握fasterRCNN的训练方法,掌握RCNN网络的预测方法。

1

新增AI算法工程化专题:10个子案例展示算法工程化中的实际工程问题, 企业真实开发中的问题和解决方案。研发, 测试环境的异同, 服务日志的介绍和实现, A/B测试,模型服务风险监控,在线服务重要指标,Git提交与代码规范化,正式环境部署(Docker, K8S),,数据分析与反馈。

2020.6.1 升级版本 1.5

课程名称

人工智能AI进阶班

课程推出时间

2020.6.1

课程版本号

1.5

主要针对版本

python3 & python2

主要使用开发工具

linux+PyCharm+Pytorch+Tensorflow

课程介绍

以周为单位迭代更新课程,包括机器学习、自然语言处理NLP、计算机视觉、AI算法强化等课程。同时为了更好的满足人工智能学员更快速的适应市场要求,推出了自然语言处理NLP案例库、计算机视觉CV案例库、面试强化题等等。同时也增加职业拓展课,学生学习完AI课程以后,可在职学习:推荐系统、爬虫、泛人工智能数据分析。

1

新增计算机视觉CV案例库

1

新增自然语言处理案例库

1

新增AI企业面试题

1

新增算法强化课程

1

新增计算机视觉强化课

2019.12.21 升级版本 1.0

课程名称

人工智能AI进阶班

课程推出时间

2019.12.21

课程版本号

1.0

主要针对版本

Python3 & Python2

主要使用开发工具

linux+PyCharm+Pytorch+Tensorflow

课程介绍

人工智能赋能实体产业的规模以每年40%的速度递增,人工智能人才在计算机视觉CV、自然语言处理NLP、数据科学的推荐广告搜索的需求越来越明确。传智教育研究院经过2年潜心研发,萃取百余位同行经验,推出全新的人工智能1.0课程。全新的人工智能课程体系具有以下优势:
1)六个月高级软件工程师培训课程。精准定位、因材施教,人工智能和Python开发分成两个不同的班型进行授课。
2)理论+实践培养AI专精型人才。如何培养人才达到企业的用人标准?传智教育提出了课程研发标准:1、AI理论方面,培养学员AI算法研究能力:AI算法实用性、先进性、可拓展性;2、AI实践方面,培养学员利用AI理论解决企业业务流的能力。
3)多领域多行业项目,全生态任性就业。设计多领域多行业项目有:智能交通项目(CV)、 实时人脸检测项目(CV)、在线AI医生项目(NLP)、智能文本分类项目(NLP)、泛娱乐推荐项目(CV+推荐)、CT图像肺结节自动检测项目(CV)、小智同学-聊天机器人(NLP)、场景识别项目(CV)、在线图片识别-商品检测项目(CV)、黑马头条推荐系统(推荐+数据科学)。
4)AI职业全技能(NLP、CV、数据科学-推荐广告搜索),涵盖8大主流就业岗位。视觉处理工程师(CV)、自然语言处理工程师(NLP)、推荐系统工程师、机器学习工程师、深度学习工程师、数据分析工程师、数据挖掘工程师、知识图谱工程师。
5)课程设置科学合理,适合AI技术初学者。
6)技术大牛倾力研发,专职沉淀AI新技术。

1

新增机器学习进阶课程

1

新增计算机视觉项目:实时人脸检测项目、智能交通项目

1

新增自然语言处理NLP项目:在线AI医生项目、智能文本分类项目

1

新增算法强化课程:进化学习、分布式机器学习、数据结构强化

 
和我们在线交谈!